


GREEN INFRASTRUCTURES

A sustainable future for our cities?

M. Rodriguez, G. Fu, D. Butler, Z. Yuan, K. Sharma

1. THE FUTURE & ITS CHALLENGES FOR CITIES

2. GREEN INFRASTRUCTURES (GI): A SUSTAINABLE SOLUTION?

TYPES OF GI PRACTICES

STRUCTURAL

Green roofs Swales

Permeable Rainwater Filters strips & Paving harvesting

Rainwater Ponds harvesting Detention

Wetlands

Water quality

management

Rain gardens

Flood risk

management

NON-STRUCTURAL

Watershed Ordinance planning development

Integrating stormwater management in the design processes

Sustaining hydrologic

Institutional & regulatory controls

balance susDrain 2019; Taylor & Wong 2002

CHALLENGES BENEFITS

LONG-TERM PERFORMANCE

INTEGRATED

EMERGING POLLUTANTS MODELLING

GI MODELLING

PERFORMANCE UNCERTAINTY ASSESSMENT

COMPLEXITY

3. METHODOLOGY

3.1 MODEL USABILITY

GI model usability framework based on the ISO 9241 usability definition.

3.2 INTEGRATED MODELLING

GI MODEL USABILITY USABILITY SATISFACTION PERFORMANCE **UNCERTAINTY** ASSESSMENT

WATER QUANTITY MODEL Hydraulic/Hydrologic

WATER QUALITY MODEL

Pollutant transport/generation/treatment

3.3 URBAN PLANNING POLICIES

Sustainable Urban Drainage Systems United Kingdom European Union

4. WHAT'S NEXT?

4.1SELECTION OF SOFTWARE & TOOLS GI usability

framework & **Objectives**

SUSTAIN SEWEX HEC MIKE CADDIES SWMM

4.2 SELECTION OF PERFORMANCE **ASSESSMENT INDICATORS**

Challenges & **Objectives**

Resilience

Key pollutants Sustainability

4.3 DATA COLLECTION

elevation

model

performance

data

Land-use

Stormwater

quality

DEVELOPMENT OF WATER **Case-studies QUANTITY AND UK & Australia QUALITY MODELS** UKCP18 GI

> Impact of urban planning policies **UK & Australia**

4.4

4.5 ADAPTATION STRATEGIES **BASED ON THE** SIMULATION RESULTS

Strategies for wastewater services and sewer infrastructure

5. FURTHER INFORMATION

This project is funded by the QUEX Institute, a joint agreement between the University of Exeter & the University of Queensland. For more please refer information, https://www.exeter.ac.uk/quex/

For more information about the research, contact Mayra Rodriguez (mr604@Exeter.ac.uk). questions and suggestions are welcome.

6. REFERENCES

- C.L. Arnold & C.J. Gibbons, 1996. Impervious surface coverage: the emergence of a key environmental indicator. Journal of American Planning Association, 62 (2), 243-258. <<u>https://d-</u>
- Maps: Australia. Available maps.com/pays.php?num_pay=281&lang=en > [Accessed April 2019] D-maps.com, 2019. Maps: United Kingdom. [Online]
- <https://dmaps.com/pays.php?num_pay=218&lang=en > [Accessed April 2019]
- S. Elga, B. Jan, B. Olle, 2015. Hydrological modelling of urbanized catchments: a review and future directions. Journal of Hydrology, 529, 62-81.
- K. Eckart, Z. McPhee, T. Bolisetti, 2017. Performance and implementation of low impact development a review. Science of the total environment, 607-608, 413-432.
- SusDrain, 2019. Delivering SuDS. [Online] Available at: < www.susdrain.org > [Accessed April 2019] A. Taylor & T. Wong, 2002. Non-structural stormwater quality best management practices - An overview of their use, value, cost and evaluation. [Online] Available at: < www.ewater.org.au > [Accessed April
- 2019] UN, 2018. World urbanization prospects: the 2018 revision. [Online] Available through: < https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf > [Accessed April 2019]